Problem 2 Pop-Pop Boat

Shantanu Kadam, Shirley Yu String Bean Theorists UC Berkeley

Prompt

The Pop-Pop boat is a small toy powered by a candle. Its engine is very simple, since it is just made of a boiler.

- 1. Propose a boat design that **maximizes the travelled distance** using a tealight candle.
- 2. Estimate the **energy conversion efficiency** of your boat. (engine: traveled)

Theory: What is a pop-pop boat?

1.

2.

Theory: Hydrodynamics

- 2 phases: suction, exhaust
 - Boat starts w/ water in pipes/boiler, so net mass flux = 0
 - But divergence of inflow greater than outflow \Rightarrow net thrust > 0
 - Due to viscosity & pressure
- By considering momentum conservation at the equilibrium velocity,

$$< thrust > = \rho \alpha < U_e^2 >$$

Density	:	ρ
Area of the exit plane	:	а
Jet velocity	:	U

Theory: Thermodynamics

- Candle ⇒ steam ⇒ pressurizes boilerplate ⇒ forces water out of pipes
- Steam travels down pipes to cooler regions ⇒ condenses ⇒ pressure drops
 ⇒ draws water into pipes

Key Parameters

- No effect
 - putt-putt noise does not affect velocity (e.g. thickening diaphragm)
 - Flexibility of diaphragm (flexible vs inflexible)
- Significant effect (thrust)
 - Number of pipes
 - Length of pipes
 - Jet velocity
 - Jet exit cross-sectional area
 - Reservoir temperature

Experimental Setup: Boat Build

Experimental Setup: Thrust

- Approximate: if α is small (<5 degrees) & $T_2 << T_1$ then $T \approx Mg \alpha$ So run boat and stack weights until equilibrium achieved

Experimental Setups for specific factors

- Introduce bubble into clear pipe extensions w/ high-speeds recording
 - bubble displacement \Rightarrow suction & exhaust velocities, pressure at pipe exit

Data Analysis

- 1. Work done by boat: $\langle T \rangle = \rho \alpha \langle U_e^2 \rangle$
- 2. Work done by steam:
 - a. Area under P-V diagram

Future

- 1. Maximizing distance traveled
 - a. Build actual boat(s) and implement experimental setups
 - i. Geometry of heating region (boilerplate vs coiled)
- 2. Energy efficiency
 - a. Calculate efficiency for specific boat(s) we build
 - b. Account for energy loss of tealight candle itself?

References

- <u>https://youtu.be/PKk3w1M4J-4?t=519</u>
- https://youtu.be/0ki9Kta8g14
- Propulsion of the Putt-Putt Boat 1 by V Sharadha
- Propulsion of the Putt-Putt Boat 2 by V Sharadha
- "2 cheap means to measure the thrust of a pop-pop engine" by Jean-Yves

Hydrodynamic Calculations

Variable description:		
Density	:	ρ
Area of the exit plane	:	а
Acceleration of the		
reference frame	:	a_{rf}
Volume of the control volume	:	Ň
Surface forces	:	F_{s}
Body forces	:	F_{b}
Velocity of the mass leaving		v
the control volume	:	U
Drag force	:	D
Velocity of the boat	:	U_{x}
Jet velocity	:	U

Using the momentum conservation equation,

$$F_s + F_b - \int_V a_{rf} \rho \, dV = \int_C U \rho U \cdot da + \frac{\partial}{\partial t} (\int_V U \rho \, dV)$$

After the boat has attained uniform velocity, along the x-direction,

$$F_{b} = 0$$

$$F_{x} = \int \tau \, da, i = D$$

$$a_{if} = 0$$

Upon averaging over a cycle of operation,

$$\frac{\partial}{\partial t} (\int_{V} U \rho \, dV) = 0 \, \cdot$$

Using the notation,

$$\frac{1}{T}\int_{0}^{T} G dt = \langle G \rangle.$$

the momentum conservation equation becomes,

$$\langle F_{ss} \rangle = \int_{cs} \langle U.i \ \rho \ U.da \rangle + \int_{cs} \langle p \ da.i \rangle.$$

Hydrodynamic Calculations

Variable description:

Density	:	ρ
Area of the exit plane	:	а
Acceleration of the		
reference frame	:	a_{rf}
Volume of the control volume	:	\hat{V}
Surface forces	;	F_{s}
Body forces	:	F_{b}
Velocity of the mass leaving		
the control volume	:	U
Drag force	:	D
Velocity of the boat	:	U_x
Jet velocity	:	U_{c}

During outflow, this equation becomes

$$\int_{u} \langle U_e.i \ \rho \ U_e.da \rangle + \int_{u} \langle p \ da.i \rangle \ \rho a \langle U_e \rangle^2.$$

During suction,

$$\int_{a} \left\langle U_{i} i \ \rho \ U_{e} da \right\rangle + \int_{a} \left\langle p \ da i \right\rangle = 0.$$

Therefore the average drag force $\langle D \rangle \approx \rho a \langle U_e^2 \rangle = \langle thrust \rangle$, under steady-state conditions. Drag can also be given in terms of the drag coefficient C_{D^*} as,

 $D = C_D \left(\frac{1}{2}\rho U_x^2 A\right)$, where C_D can be obtained from correlations.